MATH 504 HOMEWORK 3

Due Wednesday, February 17.

Problem 1. Suppose that κ is strongly inaccessible. Show that:

- (1) α is an ordinal iff $V_{\kappa} \models ``\alpha$ is an ordinal".
- (2) α is a cardinal iff $V_{\kappa} \models ``\alpha$ is a cardinal''.

Problem 2. Suppose that κ is strongly inaccessible. Show that:

- (1) α is a regular cardinal iff $V_{\kappa} \models ``\alpha$ is a regular cardinal".
- (2) α is strongly inaccessible iff $V_{\kappa} \models ``\alpha$ is strongly inaccessible".

Note: the above problem shows that if κ is the least inaccessible cardinal, then $V_{\kappa} \models$ "there are no inaccessible cardinals".

Problem 3. Suppose that κ is inaccessible. Show that $|V_{\kappa}| = \kappa$ and V_{κ} satisfies the Replacement axiom, i.e. show that if $f : X \to V_{\kappa}$ is a function from a set $X \in V_{\kappa}$, then $f \in V_{\kappa}$.

Problem 4. (1) Show that if $\aleph_{\omega} < 2^{\omega}$, then $(\aleph_{\omega})^{\omega} = 2^{\omega}$. (2) If κ is singular strong limit, show that $2^{\kappa} = \kappa^{\mathrm{cf}(\kappa)}$. (Hint: compute $2^{<\kappa}$.)

Problem 5. Show that $\aleph_{\omega}^{\omega_1} = 2^{\omega_1} \cdot \aleph_{\omega}^{\omega}$